#Experiment No 4:Program to solve a linear differential equation using SciKit and polt the result in Matplotlib
#Name and Roll
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
print("The general form of the linear differential equation is:")
print("dy/dx+p(x)*y=q(x)\n")
#Get user input for the differential equation coefficients
p = float(input("Enter the coefficient for y (p): "))
q = float(input("Enter the constant term (q): "))
y0 = float(input("Enter the initial condition y(0): "))
#Define the differential equation
def linear_diff_eq(x,y):
dydx=-p*y+q
return dydx
#Interval of integration
x_span = (0,10)
#points where the soultion is computed
x_eval = np.linspace(0,10,100)
#Solve the differential equation
solution = solve_ivp(linear_diff_eq,x_span,[y0],t_eval=x_eval)
#Display the complete differential equation on the output screen
equation_str=f"dy/dx+{p}*y={q}"
print(f"The complete differential equation is:{equation_str}")
# Plot the result
plt.plot(solution.t,solution.y[0],label='y(x)')
plt.xlabel('x')
plt.ylabel('y')
plt.title(f'Solution of Linear Differential Equation\n{equation_str}')
plt.legend()
plt.grid(True)
plt.show()
Monday, 10 March 2025
Python Program to solve a linear differential equation using SciKit and polt the result in Matplotlib
Subscribe to:
Post Comments (Atom)
Popular Posts
-
Copy Copied! #Program to print any table of any number entered by user #Name and Roll Number import...
-
Copy Copied! #program to find solution of quadratic equation #Name and Roll #Quadratic equation i...
-
Copy Copied! #Experiment No 4:Program to solve a linear differential equation using SciKit and pol...
Calculate max deflection at free end
ReplyDeletedelta_max=-1(5*w*L**4)/(384*E*1)
print(f"Maximum deflection at free end: (delta_max 1000:.4f) mm²)
Plot deflection curve
plt.figure(figsize=(8,6))
plt.plot(x* 1000, deflection 1000, label="Beam Deflection", color="b")
plt.xlabel("Length of Beam (mm)")
plt.ylabel("Deflection (mm)")
plt.title("Cantilever Beam Deflection Due to Self-Weight")
plt.legend()
plt.grid(True)
plt.show()