Monday, 10 March 2025

Python program to find solution of quadratic equation

Copied!

#program to find solution of quadratic equation
#Name and Roll 
#Quadratic equation is of the order ax^2+bx+c=0

import math

import cmath


print("Quadratic equation is of the order a*x^2+b*x+c=0 \n where a=coefficient of x^2\
 nb=coefficient of b and\nc=constant")
 #taking coefficient a,b and c from user
 
a=float(input("Enter coefficient of(x^2)"))
b=float(input("Enter coefficient of(x)"))
c=float(input("Enter value of constant"))
s=b**2-(4*a*c)

if(s>0):
     s1=((-1*b)+math.sqrt(s))/(2*a)
     s2=((-1*b)-math.sqrt(s))/(2*a)
     print("The roots are real and unequal and are given by \nxt=",s1,"and x2=",s2)   


if(s==0):
         s1=((-1*b)+math.sqrt(s))/(2*a)
         s2=((-1*b)-math.sqrt(s))/(2*a)
         print("The roots are real and equal and are given by \nxt=",s1,"and x2=",s2)   
if(s<0):
         s1=((-1*b)+cmath.sqrt(s))/(2*a)
         s2=((-1*b)-cmath.sqrt(s))/(2*a)
         print("The roots are imaginary and are given by \nxt=",s1,"and x2=",s2)  

4 comments:

  1. plt.scatter(xc.yc, color='red', label="Control Points")

    plt.title("%d-Degree Bezier Curve"%n)

    plt.annotate("Convex Hull, xy=(xe[1],ye[1]).

    xytext=(x[1]-0.5. ye[1]-0.5),

    arrowprops=dict(facecolor='green',

    shrink=0.05).)

    plt.xlabel('x-axis!)

    plt.ylabel('y-axis)

    plt.legend({"n-degree Bezier Curve", "Convex Hull"], loc="upper right")

    pit.grid()

    plt.show()

    ReplyDelete
  2. #Program to solve n-variable simultaneous equation Ax+By+Cz=D

    import numpy as np

    3

    #taking input of left hand side into a matrix

    print('Program to solve Simulataneous equation of the order Ax+By+Cz=D for n-variable')

    m=int(input('Enter number of Simultaneous Equation to solve: '))

    n=int(input('Enter number of variable in the Simultaneous Equations: '))

    ar=np.zeros([m,n])

    print('ar=\n',ar)

    print("Please enter coefficients of variable in a single line and seperated by a space: ")

    c=list(map(int,input().split()))

    Camp.array(c).reshape(m,n)

    print('Updated Array=\n',ar)

    print('Enter the constant (right hand side) values seperated by space')

    ReplyDelete
  3. e=list(map(int,input().split()))

    ar2=np.array(e).reshape(m,1)

    print(ar2)

    #calculating inverse of martix

    res=np.dot(np.linalg.inv(ar),ar2)

    print(len(res))

    #printing the values of the solution of simultaneous Equation print("\nSolution of Simultaneous Equations is given by:\n') for i in res:

    for j in i:

    print('x',j,end='')

    print()

    ReplyDelete
  4. #Experiment No.8(b)-Program to find deflection of simply supported Beam
    import numpy as np
    import matplotlib.pyplot as plt
    # User input
    l = float(input("Enter the length of beam in mm: ")) / 1000 # Convert mm to Meters
    b = float(input("Enter the breadth of beam in mm: ")) / 1000 # Convert mm to Meters
    h = float(input("Enter the height of beam in mm: ")) / 1000 # Convert mm to Meters
    E = float(input("Enter the Young's Modulus of beam Material in MPa: ")) * 1e6 # Convert MPa to
    Pascals
    density = float(input("Enter the density of beam material in kg/m^3: "))
    # Cross-sectional area and moment of inertia
    A = b * h
    I = (b * h**3) / 12 # Moment of inertia for a rectangular section
    # Distributed load per unit length (self weight)
    w = density * A * 9.81 # N/m (Gravity applied)
    # Generate discrete points along the beam length
    x = np.linspace(0, l, 100) # 100 Points for smooth curve
    # Apply the exact formula for deflection at each point
    deflection = (w * x * (l**3 - 2 * l * x**2 + x**3)) / (24 * E * I)
    # Calculate max deflection at the center
    delta_max = (5 * w * l**4) / (384 * E * I)
    print(f"Maximum deflection at the center of the beam: {delta_max * 1000:.4f} mm")
    # Plotting the deflection
    plt.figure(figsize=(8, 6))
    plt.plot(x * 1000, deflection * 1000, label='Beam Deflection', color='blue')
    plt.title('Deflection of Simply Supported Beam under Self Weight')
    plt.xlabel('Length of Beam (mm)')
    plt.ylabel('Deflection (mm)')
    plt.grid(True)
    plt.legend()
    plt.show()

    ReplyDelete

Thanks for comment

Popular Posts